
Triangle Order Optimization
for Efficient Graphics Hardware 

Computation Culling

Pedro V. Sander
ATI Research

Joshua Barczak
UMBC/ATI Research

Diego Nehab
Princeton



Outline of talk

� Problem statement
� The rendering pipeline
� Two key hardware optimizations
� Fine tuned triangle orderings

� Our algorithm
� Unified triangle order
� Planar patch clustering
� Inter-cluster ordering



The rendering pipeline

� Programmable stages
� Vertex processing
� Pixel processing



Vertex programs

� Each vertex causes a program to be run
� Programs usually perform

� Model, World, Projection Transforms
� Skinning for animation
� Per-vertex lighting (Gouraud shading)

� Can dominate rendering cost 
� Too many vertices
� Expensive operations



Vertex reuse

� Triangles reference vertices
� Referenced vertices are 

transformed by costly programs
� Hardware optimization:

� Vertex cache
� Reuse transformed vertices

� Software strategy: 
� Order triangles to maximize 

vertex locality
� [Deering 1995]

[Chow 1997]
[Hoppe 1999]
…



Vertex reuse

� Triangles reference vertices
� Referenced vertices are 

transformed by costly programs
� Hardware optimization:

� Vertex cache
� Reuse transformed vertices

� Software strategy: 
� Order triangles to maximize 

vertex locality
� [Deering 1995]

[Chow 1997]
[Hoppe 1999]
…



Vertex reuse

� Triangles reference vertices
� Referenced vertices are 

transformed by costly programs
� Hardware optimization:

� Vertex cache
� Reuse transformed vertices

� Software strategy: 
� Order triangles to maximize 

vertex locality
� [Deering 1995]

[Chow 1997]
[Hoppe 1999]
…



Long strips – 0.99 v/t Hoppe 1999 – 0.60 v/t

Best possible – 0.5 v/t
Worst possible – 3 v/t

Vertex cache efficiency



Cache miss (demo)



The rendering pipeline

� Programmable stages
� Vertex processing
� Pixel processing



Pixel programs

� Each pixel causes a program to be run
� Programs usually perform

� Texture lookups
� Shadow mapping
� Reflections
� Per-pixel lighting (Phong shading)

� Can dominate rendering cost 
� Too much overdraw
� Expensive operations



Overdraw

� Triangles are rasterized in order
� Colors are computed by costly 

programs
� Hardware optimization:

� Early Z-culling
� Skip execution off hidden pixels

� Software strategy:
� Front-to-back rendering?
� Minimizes overdraw



Overdraw

� Triangles are rasterized in order
� Colors are computed by costly 

programs
� Hardware optimization:

� Early Z-culling
� Skip execution off hidden pixels

� Software strategy:
� Front-to-back rendering?
� Minimizes overdraw



Overdraw

� Triangles are rasterized in order
� Colors are computed by costly 

programs
� Hardware optimization:

� Early Z-culling
� Skip execution off hidden pixels

� Software strategy:
� Front-to-back rendering?
� Minimizes overdraw



Overdraw (demo)



What is the ideal scenario?
� Applications can be vertex-bound, 

pixel-bound or both (depending on 
viewpoint)

� Want to preserve mesh locality
� Want to eliminate overdraw
� But how?



Goals seem incompatible

optimize VC

poor OD

optimize OD

poor VC



Alternatives

� Dynamic depth-sort 
� Can be too expensive
� Destroys mesh locality

� Sorting per object
� Does not eliminate intra-object overdraw

� Z-buffer priming
� Can be too expensive



Our goal

� Simple solution
� Good in both vertex and pixel bound 

scenarios
� Transparent to application



Insight: 
View Independent Ordering

� Back-face culling is often used
� Convex objects have no overdraw, 

regardless of viewpoint
� Might be possible even for 

concave objects!



Algorithm overview

� Cluster mesh into planar patches
� Lloyd-Max relaxation

� Sort clusters to minimize overdraw
� Minimum feedback arc set

� Optimize for locality within clusters
� Off-the-shelf [Hoppe 1999, …]



Planar patch clustering

� Start with one random triangle seed
� Repeat
� Grow clusters from seeds

� Dijkstra on dual graph
� Penalize normal variation

� Move seeds to centroids of clusters
� Reverse Dijkstra

� Add new seed on last visited triangle
� Based on Sander 2003, different metric



Step-by-step (demo)



Real meshes (demo)



Inter-cluster ordering

� Want to start with clusters that are likely to 
occlude others

� Encode priority information into a partial 
order graph

� For each pair of clusters, edge gives cost of 
drawing a cluster before the other

� Sort clusters respecting partial orders
� Should minimize overdraw



Finding the partial order graph

� For each pair of clusters
� Render in both orders
� Compare number of pixels 

generated
� Occlusion query

� Repeat for many camera 
positions

� Add one arc with net pixel 
difference between clusters



Minimum Feedback Arc Set

� Graphs are usually dense (1/2 of all edges)
� Lack of cycles makes problem trivial

� Topological sort
� Cycles make the problem untreatable

� APX-Hard
� We don't need the optimal solution
� Simple O(n) heuristic is good enough 

[Skiena 1997]
� Agrees with topological sort 



Heuristic

� Nodes with no incoming arc
� Output first

� Nodes with no outgoing arc
� Output last

� On output, remove node and arcs 
� At some point, nodes will have both 

incoming and outgoing arcs
� Output node with greatest net edge cost to 

the appropriate end of list
� Repeat



Planar patch clustering



Cluster ordering (demo)



Overdraw (full)



Overdraw (clustered)



Cache misses (full)
0.600.68

0.66



Cache misses (clustered)
0.620.71

0.68



Expensive shader demo



Conclusions

� Greatly reduces overdraw
� Preserves state-of-the-art locality
� Completely automatic
� No run-time requirements
� No reason not to use! ☺


